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HIGH GAIN FREE ELECTRON LASER OSCILLATORS

I. Introduction

We have conducted an analytical and numerical analysis of the field evolution in a high

gain free electron laser operating in the oscillator configuration, as depicted in Fig. 1. The

analysis is applicable to systems with electron beam pulse lengths which are longer that the

particle transit time in the resonator. The electron beam equilibrium is therefore assumed

to be spatially uniform and temporally stationary. The radiation field and phase averages

which are performed with the ensemble of electrons is conducted for an interaction length

which consists of the entire wiggler structure. This is in contrast to other simulations

(theories) which perform the ensemble average over the wavelength of the ponderomotive

potential; as is applicable to systems with temporally stationary fields1 or short beam

pulses 2 that are spatially periodic. ..-

We find that the numerical simulations yield qualitative and quantitative agreement

with the theory. The theory for the example given (strong pump Compton regime) can

be separated into three operation regimes which we shall denote as the ultra-high gain,

moderate gain and low gain regimes. Both the ultra-high gain (rkL >> 1) and the low

gain (LkL << 1) regimes yield growth rates that exhibit the same scaling with beam

current, energy and wiggler field as is obtained for an FEL amplifier operating in these

regimes. Additionally. we consider a moderate gain regime (r.L > 1) which is of direct

interest to .NRL experimental parameters.

II. Theoretical 'Model

An analysis of the space time evolution of the fields and particles within an FEL os-

cillator requires a self-consistent coupling of the fundamental equations for the particles

Manuscript approved Dpcember ,;. 19 4.
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and fields~ 3 -s . We have considered a Maxwell-Vlasov description of the fields and par-

ticles. The analysis in Appendix A results in the following system of equations for the

coupling of the fields and particles. The backward travelling wave evolves according to,

- iaab(:) = 0. The forward travelling potential and the electrostatic potential

evolve according to,

zaf(z) + ia(:) =

-Cj dz'(z' - z) exp[-iaK(z' - z),(d/&z' - iK)I3,,a(z')/2 -oW)]

ic2 jdz'exp[-iAK(z' - z)](0/0:' - iK)[(1 + 3!o)3,d 1(z')/2- o(.')1, (1)

- iKo(:)/2 -L9
-C 3  d-'(:' - :)exp1-i..K(:' - 4)](1l0'- iK)[3,a>f(z')/2 - (:')I

+ ic4 ] dz'exp[-iAt(J - :)](\/O' - iK)[3 vf(z')i2- (I - 3z0)o(z')]. (2)

The parameters in Eqs. (1) and (2) are given by, a = _,2/c-.(l-3.j/2oc. c =

1.2 (1 - 32)(-' A.-/.:,. c2 = -.24..../ 2.o -: , e-

K = k,) + k, and AK K - (,o + -. ')/vo. By making use of the convolution theorem.

the Laplace transfcrmi of Eqs. (1) and (2) yields,

{f(. + ia)[S - iAK)2 +2c3 l] + iK(.,,/2ja'f(s) =

{(s - iAK)2 + 2c (1 - 3',/4)}f(0). (3)

Os. - iA_,) 2 +2C 3 }o(s) = c. 3,,[ri(s)- .a 1 (o)/,.. (4)

where if(s) and o(s) are the Laplace transformed vector and scalar potentials. and we have

retained only the terms in the driving current that arise from the momentum derivatives of

the phase, d \K/Opz. We have also assumed that the electron beam enters the resonator

unbunched so that A(: = 0) = 0.

Since the singularities of the Laplace transformed potentials are isolated poles, the

Bromwich inversion of these transforms can be easily performed.

2~



* , . . . - 7 • .. . . . . . .

'(z) - 2 Residue{j(s), sj }exp(sj:), (5)

= ( Residne{(4f }exp(s1 :), (6)

where 8j, are the poles of the Laplace transformed potentials. The solution for the radiation V

potential given in Eq. (6) is of the same generic form as the solution obtained by Bernstein

and Hirshfield9 for the FEL amplifier configuration. Our analysis shall differ in that the

backward travelling waves are not neglected, and the combination of the forward and

backward travelling waves are required to satisfy the appropriate boundary conditions

at the mirror surfaces. Specifically, the tangential component of the electric field must

be zero at the non-transmitting mirror surface, i.e., 5.(0) + 5b(O) = 0. At the partially

transmitting mirror surface at the end of the resonator, the tangential components of

the electric field must be continuous, i.e., ai(L)exp(-ikoL) + ab(L)exp(ikoL) - (1-

v*)iif(L) exp(-ikoL) = 0, where L is the length of the resonator and R is the fractional

power reflected from the far end resonator mirror. This yields the following expression for

the boundary conditions at the mirror surfaces,

.2~,

iA 'L v/R 'exp - exp {i[ -I- (1-.312)-/2kolL }EResidue df(s).si}exp(sjL), (7)
c Gf(0) 2-'oc7, .d,

which is the equation that self-consistently determines the complex operating frequency,

..Aw. of the oscillator.

III. Results for Cornpton Regime

In the Compron regime the effect of the electrostatic potential can be neglected(lO, 1).

In addition we shall assume that the spatial derivative of the vector potential in the driving

current is negligible. These derivatives are negligible when. 1(s - iAK)2 1 >> 2c3 and

Is1 << K. Under these conditions the Laplace transform of the .wctor potential is given

by,

3
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3

dsfs) = a(0)(a - iAK) /1 ( - si), (8)
j=1 %de

where sj are the roots of the dispersion relation, (q - iAK) 2 (s + ia) = -ic,3 KI2 ,

+ ,3o) k43joC2 -. Since ko is a free parameter, choose k0 such that, AK

where r0 + .o)J(, + o)in4c k0 is a isasailgot=rt orsodn

L-0 f eac of t poles one obai s he,!2 fol/2/-,goc7. Which results in the following

solutions to the dispersion relation,

2 O2/v"3 (10)

= 3It'i(1 + 3.v)idn from C2, /23o is a spatial growth rate corresponding

to the largest spatial growth rate in the amplifier case 12. By evaluating the residues of!f(s)th fonr eachpeti of these poles, one obtains the following solution for the spatial structure of1

as: -a(0 --3=exp()" (10)1

It is evident from Eq.(10) that the spatial growth of the radiation field can be de-

scribed by the interference of three modes; which can be identified as the positive and...

negative energy beam modes, and a transverse electromagnetic mode. The constructive or

destructive nature of this interference is dependent on the values of the physical parame-

ters which characterize the roots, s. For physical parameters such that. r,)L >> 1, the

unstable mode dominates and one obtains exponential spatial growth at the rate F0.,)

The temporal growth rate of the radiation field is obtained from the negative imaginary

part of the complex oscillator frequency, A.'. The oscillator frequency is determined by

the boundary conditions as expressed in Eq. (7). which for the appro-dmate roots under %

consideration yields.

iAL R" .2 "exp3 ---ep 1 *[.7,(1- -,L } / ,k.Lexp(. ,L). (11)
C 3 2..

4 .exp.



We shall consider three distinct solutions to this equation for the complex oscillator fre-

quency. The first of which is the ultra-high gain regime (roL >> 1). in which case, only

the fastest growing mode in Eq. (11) is retained. The second case is the moderate gain

regime (roL > 1), where only the decaying mode in Eq. (10) is neglected. The final case

is valid for arbitrary gain and all terms in Eq. (11) are retained. The imaginary part of

the oscillator frequency yields the following temporal growth rates,

L1 '
= + roL/2, Ultra-High Gain (12)

L 1 1'-
r, -In - + - ln2cosh(1'oL) +±2cos(v'3iFoL)],
C 2 3 4

Moderate Gain (13)

L I v'1R 12
r., L  -In + -In[I +4cos(v'~roL)cosh(roL) +4cosh (roL)l.

c 2 3 4

Arbitrary Gain (14)

In each of the expressions for the growth rate the first term is negative definite. This

represents the effect of losses at the mirrors and the coupling losses due to the splitting of

the radiation into three modes. The necessary condition for the oscillator to lase is that

the remaining terms exceed this loss. For the ultra-high gain case this requires rOL >

-ln(v'R/3). This expression has been confirmed experimentally"3 in recent operation

of the NRL FEL oscillator. The interaction length, L, can be varied by dumping the

beam at different axial locations within the wiggler. For the following set of experimental

parameters, beam energy Eo = 500 keV, beam current I = 100 A, wiggler field strength

B,= 615 G, beam radius r, = 0.64 cm and wiggler length f, = 4.0 cm. the minimum

interaction lengTh is determined to be 45 cm. Inserting this value into Eq.(12) yields a

theoretical value of 0.64 for the reflection coefficient. The independently measured Bragg

reflection coefficient has the value 0.65. which is in excellent agreement with the theoretical

value.

9%m
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IV. Multi-Mode Simulation

The space-time evolution of the fields in the resonator is simulated by numerically

evolving the equations for the fields and particles. The radiation field model for the multi-

mode simulation is given by,

AR(:, t) = a,(t) sin (k,,:)exp(iL',t)eZ + c.c., (15)

0((.t) = ZoI,,(t) sin[(k,, + k,)Z ,' t]+ p2,,(t) cos[(k,, + k,)z - t]. (16)
n

where k, = n,/L= wa /c and the sum is over the discrete number of modes under con-

sideration. This model has the property that the complex expansion coefficients in the

harmonic analysis, a,(t), ol, (t). o2,, (t), are only functions of time; which results in ordi-

nary differential equations for the particle and field evolution. This model also has the

attribute that the field boundary conditions at two perfectly reflecting mirrors is automat-

jcally satisfied, and we model the resonator losses heuristically by adding a damping term

to the wave equation, [a2 /c: 2 - - 2 /0t 2 - vc2a/t.-Rz.t)= 4rc-i_ (:.t). where

t= .Q and Q is the quality factor of the resonator. The driving currents and charge den-

sitie5 for the vector and scalar potentials are modeled with a discrete distribution function

as follows,

p(z, t)= -e dzonlt)t(: - 5(,).t)). (17)

eA=±:.t - -mc dzor)(tlSlz - 5(zo. t))/5;o. ti8)

where. .4 =AR +--4,.. A (1) = n0(-) f- exp(- t/1R)j and rl, cX) is the flattop dtensity

of the electron beam pulse. tR is the characteristic rise time for the beam current or density.

and 1(ZO. t) is the axial orbit of a particle located at position Z) at t = 0.

The slowly varying field approximation, a,(t)iOt << , yields the following

set of equations for the evolution of the fields and particles.

6A~IAl



2 ^to ,1

' 2L + / dro cosk"(70- P76 (20).. 2 A, J7- 1  rn):.

,i n -)'2n do cosli, 0 ro (21)

02n -,- 3 2nj dro sin[,,(ro, r)JP(ro), (22)

= 0 /n + An "(km + k+)L[i'2, COS[,&m(o, )]- OIsinS.'m(7, r)1]
m

+ , 3 Y'{[(km + k.)L-kmL3-+3ozO']ltmsin[i m(ro, r)]

- -mn

, We have introduced the following normalized parameters, r = vozt/L, -n = eA,/mc2 .

eo/mc 2,  (...)' = O(.../Or. We have also made the following definitions.

= iAi7ex~i~r. 9~7or)=(kn + k ).(7 , -,I, - 0,,(r), V'4? =

vL ii/o z. L4=4kLF(1 - ~/2)/2k2 cI.3r F,3,,L 3()7 /C,3jkn An =
-F, +/ ,kL =+, 3,,,(k+++)V+ -,

.FP'o/c'(k, + k1v) 2 Jo , 3, L(k,+ + k,,,)/I Z 34 n n + 1

and P(r)) = 1- exp(--ro/rR)., where L is the length of the resonator. F is the filling factor

and .. p is the nonrelativistic plasma frequency.

This system of equations is solved numerically by using a four-point Adams-Bashforth

predictor corrector scheme which is initialized by using the three point Runge-Kutta

method. The ensemble average over initial electrons, J7 1 (...)d70 . is typically performed

with two thousand (2000) particles. The results of the simulations and the linear theory.

obtained from the linearization of Eqs. (10) - (23), are shown in Figs. 2 and 3.

V. Conclusions

A comparison of the temporal growth rates obtained from the linear theory and the

numerical simulations is shown in Figs. 2 and 3. The growth rates for the simulations are

obtained numerically from the field amplitude data during the initial ield evolution. where

ml

q + , -': ',.. '. -. " . .. . . • • " .: ' : " .. .. . - +' - .- -" .. • + -... " -- .. . . . .



the wave growth is linear. In Fig. 2 the data is presented for a low gain case with physical

parameters given by, -y = 2.0, 1 = 5A, F = 0.2. kwrb = 0.62831, = 0.2 andL/4e = 50.

There is an excellent agreement between theory and simulation. In Fig. 2 we also compare

the theoretical and numerical efficiencies for a high gain case. Where the efficiency is

defined as the stored electromagnetic energy density normalized to the incident beam

energy density. The theoretical estimates of the efficiency are based on particle trapping

arguments' 2 , with the assumption that all the energy lost by the particles is converted

into electromagnetic ener-,y. The characteristic change in velocity of a particle is given by
the difference in the beam velocity and the phase velocity of the trapping potential. This

phase velocity is approximated from the results of the linear dispersion relation. Again we

find good qualitative and quantitative agreement between the simulation and theory.
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Appendix A

In the following, we shall consider the space-time evolution of the radiation fields

produced by the interaction of a beam of relativistic electrons with a helical wiggler field

contained within the mirrors of an optical resonator. The analysis is fully relativistic

and is conducted self-consistently within the framework of the Vlasov-Maxwell system of

equations.

The wiggler vector potential is modeled as follows,

A.(z [ -- exp (ik,,,z).. + exp(-ik,:)+J (Al)

where the wiggler magnetic field strength is B,, the wiggler period is t,= 2r/k. and

the basis vectors are 6± = (± i ,)/2. We have assumed in this model that the beam

radius is small compared to the wiggler period (k,rb < 1) hence the transverse gradients

in the wiggler field are neglected. We similarly invoke the para-axial approximation to the .

radiation fields and neglect transverse coordinate dependencies in the fields, to obtain the

following radiation field model for the vector and scalar potentials,

.-f(z, t) = [af(:. t)exp(-ikoZ) + ab(z t)exp(ikoz)]exp iwot) _ + c.c., (.2)

O(z, t) = O(:, 1)exp[-i(ko + k,)z + iz'ot] + c.c., (A3)

where a1 (z, t) and ab(z,t) denote the forward and backward components of the wave field

respectively, and w o = ck 0 is the frequency. These field coefficients are assumed to be

slowly varying functions of space and time compared to the radiation wavelength and

temporal period. The slow spatial dependence of the field coefficients is expressed by.

I Q-'OQ/O: J<< k,. with Q = af(z, t), a,(-, t).o(:. t) and the slow temporal dependence

of the the field coefficients is expressed by, I Q-OQ/Ot << .

The space-time evolution of the fields is governed by Maxwell's equations, which can

be cast in the form, (92/0:2 c- 02/8t2)-(z,t) = 4r,-'fc(:.t) and a2/a:2o(:, t)=

-4,-rp(z, t). The driving current and charge densities are obtained from the appropriate

moments of the Vlasov distribution function. The Vlasov distribution function is evolved

13



according to the equation, {OIN + (pzlm,)O/Oz -e[f + (gx .f)/lmc] .l8}g(z. t) =

0. By making use of the fact that the canonical transverse momentum is an invari-

ant of the motion and assuming that the beam is cold in the transverse direction (e.g.,

g(:,P.,Px,p,t) = Nz.pz.t)(Px)6(Py) ) the evolution of the reduced distribution func-

tion is governed by,

"+ +e - -(---A)
2M-Ta a2 .A) ap- (:pZ. 0 0, (M4)

where me 2 T = {m 2 C4 + c2 pj + e2(._..-')}i/2. Since 0(.,,..-f,)/0z = 0, the equilibrium

distribution function satisfies the equation, /at + (p,/m-o O/Ola °(z, pz, t) = 0, where

meyo = {rnc 4 + cp + 2 /k2 i1/2. For long electron beam pulses we shall consider

* spatially and temporally homogeneous equilibria given by i) lz, p., t) = 0( °) (Pz). To first

order in the perturbed fields, the evolution of the linearized distribution function is given

by.

-+ O~zp:. t) - + ) . (A5) ::
t -0 5 = -rn,o C2  a 1pz

The solution to the linearized Vlasov equation is formally given by,

g(z,'pt) dz-'m °  e +,
Jo Pz t'z ..

+ Tw"°c 2  ;,,' + )) (A6)

Linearizing the wave equations for A and 6 one obtains.

a02 1 (92I z ' :,~i

57 -t2 ' 0( ) 2 -- - .X, f dp f 2:.
2 c C rno

-A dPc -' " ) I dp 3 (.47)

t= 4;rnoe dp:(lz, pzt). (.48)

14
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By making use of the slowly varying coefficient approximations, the components of

Maxwell's equations can be expressed as:

+ 9 2w0 &J (3) L af (z, t)1z c 0 t 2wo c7 2 :'

+ B -expj-i(Kz - Wot) ] dp.o1 (:,p.. t), (-g)
+ 2woJ kP, (1)

2.

a I SW (1d) (3

(a Of} =a(Z t)~[( 0-tI d(A')(

KK PiKz-w,) dp-j' t), (.-II)

where mc2 7 = {r 2c + C2 pi + e2 B2/k2 1/2, a(.) f p 7_~njO p)
2 4,rnoe2 /n, = eB.,/mTc 2 kw and K = ko + k,. Also note that in the fire-

quency regime for resonant interaction of the radiation field and the beam particles,

( '.O ::z 2 h--2kwc) the driving current for the backward wave is negligible. We shall solve

this system of equations in the time asymptotic limit for which the forward wave oscillates

at a single complex frequency. af{z, t) = if ()exp(iA,,4t). where .Aw; is to be determined

self-consistently from the boundary conditions at the mirror surfaces.

The ponderomotive potential in terms of the time asymptotic field coefficients is given

by,

A - f(:)exp{-i[Kz - ( co + A,4t]} + nonresonant terms. (A.12)
2k,

Retaining only the phase resonant terms, the formal solution to the linearized Vlasov

equation can be written as follows,

00^', ( ( p+ A-; aJ- (

(z'PZ't) dz'e exp- i[k -- I : p.

a(laZ' - -L-I'if (AIZ)

2-o-

,'' ,€ . ... .. .. ., . -. ,.. .. . ..-. -, . . . . . . . '. , % . ..- - ' . " .. , -. . -. . .- ,,,,,, , '. , . . ,, ,-. . . . , ,,5.



Inserting this result into the Vlasov-Maxwell system of equations one obtains,

P 1+o+ i [ -,,./ 2)]J a.,-(z)=

41iP 3 (13)L + ) d"''- z)exp{ - iAK(z' - z)}

2woc T * o c '-

(a/'- iK)[ a.(Z') - ;(z')] + W 
-

dz'e.xp{ - iAK( :' - z)} ta ' - iK) [(I + ,3o),3a:f(:')/2 - (A14)fox

= W2 (I- (WO + A;,;)
2 -2 K e 27 -) } (ao - " K [ .:~'/ 2 o : )

'( - z)exp{ - iA z' - - i

/oZ

+ ] dz'exp{ -i - z)}/az' - iK) t3: )/2-1(- 31 -

(415)

where we have defined AK = K - (, + Ak,)/vzo. The previous set of equations yields a

dispersion relation which we shall refer to as the complete dispersion relation. A simplified

dispersion relation is obtained by noting that in the momentum integration , the results

are most sensitive to changes in the exponent, AK(Z' - :). Retaining only the terms in

the integration by parts which are proportional to OAK/ap., one obtains the following

simplified system of equations,

+ [i. -.. , - .o2] *v~~2wC 3 2 a r(:).

-W 2 3 (1 + A' f + '
- ad.1 , ' - - _ , dz'(z' - .-exp - ± (z:' - Z)} l

- ,-iK) "3 af(z)-g ' (.416) ."

a:, 2
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".
Z(.Z - :)exp{ -i..K(z'- - iK)[ Li(:') - t')]. (A17)

In both the cases of the complete and simplified set of equations, the equations are of the

convolution type and can be solved by Laplace transform methods. The text of the paper

consists of a detailed analysis of the simplified set of equations in the Compton regime.
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